Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Plant Sci ; 15: 1350281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736448

RESUMO

Fungal diseases, caused mainly by Bipolaris spp., are past and current threats to Northern Wild Rice (NWR) grain production and germplasm preservation in both natural and cultivated settings. Genetic resistance against the pathogen is scarce. Toward expanding our understanding of the global gene communications of NWR and Bipolaris oryzae interaction, we designed an RNA sequencing study encompassing the first 12 h and 48 h of their encounter. NWR activated numerous plant recognition receptors after pathogen infection, followed by active transcriptional reprogramming of signaling mechanisms driven by Ca2+ and its sensors, mitogen-activated protein kinase cascades, activation of an oxidative burst, and phytohormone signaling-bound mechanisms. Several transcription factors associated with plant defense were found to be expressed. Importantly, evidence of diterpenoid phytoalexins, especially phytocassane biosynthesis, among expression of other defense genes was found. In B. oryzae, predicted genes associated with pathogenicity including secreted effectors that could target plant defense mechanisms were expressed. This study uncovered the early molecular communication between the NWR-B. oryzae pathosystem, which could guide selection for allele-specific genes to boost NWR defenses, and overall aid in the development of more efficient selection methods in NWR breeding through the use of the most virulent fungal isolates.

2.
Appl Environ Microbiol ; 89(6): e0193122, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212685

RESUMO

Modern agriculture often relies on large inputs of synthetic fertilizers to maximize crop yield potential, yet their intensive use has led to nutrient losses and impaired soil health. Alternatively, manure amendments provide plant available nutrients, build organic carbon, and enhance soil health. However, we lack a clear understanding of how consistently manure impacts fungal communities, the mechanisms via which manure impacts soil fungi, and the fate of manure-borne fungi in soils. We assembled soil microcosms using five soils to investigate how manure amendments impact fungal communities over a 60-day incubation. Further, we used autoclaving treatments of soils and manure to determine if observed changes in soil fungal communities were due to abiotic or biotic properties, and if indigenous soil communities constrained colonization of manure-borne fungi. We found that manure amended soil fungal communities diverged from nonamended communities over time, often in concert with a reduction in diversity. Fungal communities responded to live and autoclaved manure in a similar manner, suggesting that abiotic forces are primarily responsible for the observed dynamics. Finally, manure-borne fungi declined quickly in both live and autoclaved soil, indicating that the soil environment is unsuitable for their survival. IMPORTANCE Manure amendments in agricultural systems can impact soil microbial communities via supplying growth substrates for indigenous microbes or by introducing manure-borne taxa. This study explores the consistency of these impacts on soil fungal communities and the relative importance of abiotic and biotic drivers across distinct soils. Different fungal taxa responded to manure among distinct soils, and shifts in soil fungal communities were driven largely by abiotic factors, rather than introduced microbes. This work demonstrates that manure may have inconsistent impacts on indigenous soil fungi, and that abiotic properties of soils render them largely resistant to invasion by manure-borne fungi.


Assuntos
Microbiota , Micobioma , Solo/química , Esterco/microbiologia , Agricultura , Microbiologia do Solo
3.
Front Microbiol ; 12: 576763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093451

RESUMO

Liming is an effective agricultural practice and is broadly used to ameliorate soil acidification in agricultural ecosystems. Our understanding of the impacts of lime application on the soil fungal community is scarce. In this study, we explored the responses of fungal communities to liming at two locations with decreasing soil pH in Oregon in the Pacific Northwest using high-throughput sequencing (Illumina MiSeq). Our results revealed that the location and liming did not significantly affect soil fungal diversity and richness, and the impact of soil depth on fungal diversity varied among locations. In contrast, location and soil depth had a strong effect on the structure and composition of soil fungal communities, whereas the impact of liming was much smaller, and location- and depth-dependent. Interestingly, families Lasiosphaeriaceae, Piskurozymaceae, and Sordariaceae predominated in the surface soil (0-7.5 cm) and were positively correlated with soil OM and aluminum, and negatively correlated with pH. The family Kickxellaceae which predominated in deeper soil (15-22.5 cm), had an opposite response to soil OM. Furthermore, some taxa in Ascomycota, such as Hypocreales, Peziza and Penicillium, were increased by liming at one of the locations (Moro). In conclusion, these findings suggest that fungal community structure and composition rather than fungal diversity responded to location, soil depth and liming. Compared to liming, location and depth had a stronger effect on the soil fungal community, but some specific fungal taxa shifted with lime application.

4.
Int J Food Microbiol ; 350: 109225, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34023678

RESUMO

To address a knowledge gap about the grape berry mycobiome from Washington State vineyards, next-generation sequencing of the internal transcribed spacer region (ITS1) was used to identify native yeast and fungal species on berries of cultivar 'Cabernet Sauvignon' from two vineyards at veraison and harvest in 2015 and 2016. Four hundred fifty-six different yeast amplicon sequence variants (ASV), representing 184 distinct taxa, and 2467 non-yeast fungal ASV (791 distinct taxa) were identified in this study. A set of 50 recurrent yeast taxa, including Phaeococcomyces, Vishniacozyma and Metschnikowia, were found at both locations and sampling years. These yeast species were monitored from the vineyard into laboratory-scale spontaneous fermentations. Taxa assignable to Metschnikowia and Saccharomyces persisted during fermentation, whereas Curvibasidium, which also has possible impact on biocontrol and wine quality, did not. Sulfite generally reduced yeast diversity and richness, but its effect on the abundance of specific yeasts during fermentation was negligible. Among the 106 recurring non-yeast fungal taxa, Alternaria, Cladosporium and Ulocladium were especially abundant in the vineyard. Vineyard location was the primary factor that accounted for the variation among both communities, followed by year and berry developmental stage. The Washington mycobiomes were compared to those from other parts of the world. Sixteen recurrent yeast species appeared to be unique to Washington State vineyards. This subset also contained a higher proportion of species associated with cold and extreme environments, relative to other localities. Certain yeast and non-yeast fungal species known to suppress diseases or modify wine sensory properties were present in Washington vineyards, and likely have consequences to vineyard health and wine quality.


Assuntos
Ascomicetos/classificação , Basidiomycota/classificação , Frutas/microbiologia , Micobioma/genética , Vitis/microbiologia , Vinho/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , DNA Intergênico/genética , Fazendas , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Washington , Fermento Seco , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
5.
Microbiome ; 9(1): 86, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836842

RESUMO

BACKGROUND: Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities. RESULTS: In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil. CONCLUSIONS: Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity. Video Abstract.


Assuntos
Rizosfera , Microbiologia do Solo , Bactérias/genética , Basidiomycota , Raízes de Plantas , RNA Ribossômico 16S/genética , Rhizoctonia
6.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31862727

RESUMO

The Inland Pacific Northwest is one of the most productive dryland wheat production areas in the United States. We explored the bacterial and fungal communities associated with wheat in a controlled greenhouse experiment using soils from multiple locations to identify core taxa consistently associated with wheat roots and how land use history influences wheat-associated communities. Further, we examined microbial co-occurrence networks from wheat rhizospheres to identify candidate hub taxa. Location of origin and land use history (long-term no-till versus noncropped Conservation Reserve Program [CRP]) of soils were the strongest drivers of bacterial and fungal communities. Wheat rhizospheres were especially enriched in many bacterial families, while only a few fungal taxa were enriched in the rhizosphere. There was a core set of bacteria and fungi that was found in >95% of rhizosphere or bulk soil samples, including members of Bradyrhizobium, Sphingomonadaceae, Massilia, Variovorax, Oxalobacteraceae, and Caulobacteraceae Core fungal taxa in the rhizosphere included Nectriaceae, Ulocladium, Alternaria, Mortierella, and Microdochium Overall, there were fewer core fungal taxa, and the rhizosphere effect was not as pronounced as with bacteria. Cross-domain co-occurrence networks were used to identify hub taxa in the wheat rhizosphere, which included bacterial and fungal taxa (e.g., Sphingomonas, Massilia, Knufia, and Microdochium). Our results suggest that there is a relatively small group of core rhizosphere bacteria that were highly abundant on wheat roots regardless of soil origin and land use history. These core communities may play important roles in nutrient uptake, suppressing fungal pathogens, and other plant health functions.IMPORTANCE Plant-associated microbiomes are critical for plant health and other important agroecosystem processes. We assessed the bacterial and fungal microbiomes of wheat grown in soils from across a dryland wheat cropping systems in eastern Washington to identify the core microbiome on wheat roots that is consistent across soils from different locations and land use histories. Moreover, cross-domain co-occurrence network analysis identified core and hub taxa that may play important roles in microbial community assembly. Candidate core and hub taxa provide a starting point for targeting microbiome components likely to be critical to plant health and for constructing synthetic microbial communities for further experimentation. This work is one of the first examples of identifying a core microbiome on a major field crop grown across hundreds of square kilometers over a wide range of biogeographical zones.


Assuntos
Agricultura/métodos , Microbiota , Rizosfera , Triticum/microbiologia , Geografia , Triticum/crescimento & desenvolvimento , Washington
7.
PLoS One ; 14(10): e0223779, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31671139

RESUMO

Soil microbes live within highly complex communities, where community composition, function, and evolution are the product of diverse interactions among community members. Analysis of the complex networks of interactions within communities has the potential to shed light on community stability, functioning, and evolution. However, we have little understanding of the variation in interaction networks among coevolved soil populations. We evaluated networks of antibiotic inhibitory interactions among sympatric Streptomyces communities from prairie soil. Inhibition networks differed significantly in key network characteristics from expectations under null models, largely reflecting variation among Streptomyces in the number of sympatric populations that they inhibited. Moreover, networks of inhibitory interactions within Streptomyces communities differed significantly from each other, suggesting unique network structures among soil communities from different locations. Analyses of tri-partite interactions (triads) showed that some triads were significantly over- or under- represented, and that communities differed in 'preferred' triads. These results suggest that local processes generate distinct structures among sympatric Streptomyces inhibition networks in soil. Understanding the properties of microbial interaction networks that generate competitive and functional capacities of soil communities will shed light on the ecological and coevolutionary history of sympatric populations, and provide a foundation for more effective management of inhibitory capacities of soil microbial communities.


Assuntos
Microbiologia do Solo , Streptomyces/fisiologia , Simpatria/fisiologia
8.
Front Microbiol ; 10: 1339, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316473

RESUMO

Earthworms play important roles in no-till cropping systems by redistributing crop residue to lower soil horizons, providing macropores for root growth, increasing water infiltration, enhancing soil quality and organic matter, and stimulating nitrogen cycling. The soil impacted by earthworm activity, including burrows, casts, and middens, is termed the drilosphere. The objective of this study was to determine the effect of earthworms on soil microbial community composition in the drilosphere at different landscape slope positions. Soil cores (50 cm depth) were extracted from three landscape locations (top, middle, and bottom slope positions) on a sloping aspect of a no-till wheat farm. Soil was sampled at the bottom of the soil core from inside multiple earthworm (Lumbricus terrestris) channels (drilosphere) and from adjacent bulk soil. Bacterial communities were characterized for 16S rRNA gene diversity using high-throughput sequencing and functional denitrifier gene abundance (nirK, nirS, and nosZ) by quantitative PCR. Bacterial communities were structured primarily by the landscape slope position of the soil core followed by source (bulk versus drilosphere soil), with a significant interaction between core position and source. The families AKIW874, Chitinophagaceae, and Comamonadaceae and the genera Amycolatopsis, Caulobacter, Nocardioides, and Variovorax were more abundant in the drilosphere compared to the bulk soil. Most of the individual bacterial taxa enriched in the drilosphere versus bulk soil were members of Actinobacteria, including Micrococcales, Gaiellaceae, Solirubrobacterales, and Mycobacterium. In general, the greatest differences in communities were observed in comparisons of the top and bottom slope positions in which the bottom slope communities had significantly greater richness, diversity, and denitrifier abundance than the top slope position. Populations of denitrifiers (i.e., ratio of nirK+nirS to 16S rRNA) were more abundant in earthworm-impacted soils and there was a significant impact of L. terrestris on soil community composition which was observed only in the top landscape position. There were significant correlations between the abundance of nirK and nirS and taxa within Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi, suggesting a broad diversity of denitrifying bacteria. Earthworms influence the soil microbial communities, but the impact depends on the slope location in a variable landscape, which likely reflects different soil characteristics.

9.
Microb Ecol ; 78(3): 737-752, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30796467

RESUMO

Class B biosolids are used in dryland wheat (Triticum aestivum L.) production in eastern Washington as a source of nutrients and to increase soil organic matter, but little is known about their effects on bacterial communities and potential for harboring human pathogens. Moreover, conservation tillage is promoted to reduce erosion and soil degradation. We explored the impacts of biosolids or synthetic fertilizer in combination with traditional (conventional) or conservation tillage on soil bacterial communities. Bacterial communities were characterized from fresh biosolids, biosolid aggregates embedded in soil, and soil after a second application of biosolids using high-throughput amplicon sequencing. Biosolid application significantly affected bacterial communities, even 4 years after their application. Bacteria in the families Clostridiaceae, Norcardiaceae, Anaerolinaceae, Dietziaceae, and Planococcaceae were more abundant in fresh biosolids, biosolid aggregates, and soils treated with biosolids than in synthetically fertilized soils. Taxa identified as Turcibacter, Dietzia, Clostridiaceae, and Anaerolineaceae were highly abundant in biosolid aggregates in the soil and likely originated from the biosolids. In contrast, Oxalobacteriaceae, Streptomyceteaceae, Janthinobacterium, Pseudomonas, Kribbella, and Bacillus were rare in the fresh biosolids, but relatively abundant in biosolid aggregates in the soil, and probably originated from the soil to colonize the substrate. However, tillage had relatively minor effects on bacterial communities, with only a small number of taxa differing in relative abundance between traditional and conventional tillage. Although biosolid-associated bacteria persisted in soil, potentially pathogenic taxa were extremely rare and no toxin genes for key groups (Salmonella, Clostridium) were detectable, suggesting that although fecal contamination was apparent via indicator taxa, pathogen populations had declined to low levels. Thus, biosolid amendments had profound effects on soil bacterial communities both by introducing gut- or digester-derived bacteria and by enriching potentially beneficial indigenous soil populations.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Triticum/microbiologia , Bactérias/classificação , Bactérias/genética , Fertilizantes/análise , Filogenia , Solo/química , Triticum/crescimento & desenvolvimento , Washington
10.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800123

RESUMO

Soil edaphic characteristics are major drivers of fungal communities, but there is a lack of information on how communities vary with soil depth and landscape position in no-till cropping systems. Eastern Washington is dominated by dryland wheat grown on a highly variable landscape with steep, rolling hills. High-throughput sequencing of fungal ITS1 amplicons was used to characterize fungal communities across soil depth profiles (0 to 100 cm from the soil surface) among distinct landscape positions and aspects across a no-till wheat field. Fungal communities were highly stratified with soil depth, where deeper depths harbored distinct fungal taxa and more variable, less diverse fungal communities. Fungal communities from deep soils harbored a greater portion of taxa inferred to have pathotrophic or symbiotrophic in addition to saprotrophic lifestyles. Co-occurrence networks of fungal taxa became smaller and denser as soil depth increased. In contrast, differences between fungal communities from north-facing and south-facing slopes were relatively minor, suggesting that plant host, tillage, and fertilizer may be stronger drivers of fungal communities than landscape position.


Assuntos
Fungos/classificação , Fungos/genética , Microbiologia do Solo , Triticum/microbiologia , Biodiversidade , DNA Fúngico/genética , DNA Intergênico/genética , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Micobioma , Solo , Washington
11.
Microb Ecol ; 76(1): 240-257, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29218372

RESUMO

Glyphosate is the most-used herbicide worldwide and an essential tool for weed control in no-till cropping systems. However, concerns have been raised regarding the long-term effects of glyphosate on soil microbial communities. We examined the impact of repeated glyphosate application on bulk and rhizosphere soil fungal communities of wheat grown in four soils representative of the dryland wheat production region of Eastern Washington, USA. Further, using soils from paired fields, we contrasted the response of fungal communities that had a long history of glyphosate exposure and those that had no known exposure. Soil fungal communities were characterized after three cycles of wheat growth in the greenhouse followed by termination with glyphosate or manual clipping of plants. We found that cropping system, location, year, and root proximity were the primary drivers of fungal community compositions, and that glyphosate had only small impacts on fungal community composition or diversity. However, the taxa that responded to glyphosate applications differed between rhizosphere and bulk soil and between cropping systems. Further, a greater number of fungal OTUs responded to glyphosate in soils with a long history of glyphosate use. Finally, fungal co-occurrence patterns, but not co-occurrence network characteristics, differed substantially between glyphosate-treated and non-treated communities. Results suggest that most fungi influenced by glyphosate are saprophytes that likely feed on dying roots.


Assuntos
Redes Comunitárias , Glicina/análogos & derivados , Herbicidas/efeitos adversos , Micobioma/efeitos dos fármacos , Raízes de Plantas/microbiologia , Microbiologia do Solo , Triticum/microbiologia , Agricultura , Biodiversidade , DNA Fúngico/análise , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/genética , Glicina/efeitos adversos , Micobioma/genética , Rizosfera , Análise de Sequência de DNA , Solo/química , Washington , Glifosato
12.
Phytopathology ; 108(5): 582-594, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29256828

RESUMO

The successional dynamics of root-colonizing microbes are hypothesized to be critical to displacing fungal pathogens that can proliferate after the use of some herbicides. Applications of glyphosate in particular, which compromises the plant defense system by interfering with the production of aromatic amino acids, are thought to promote a buildup of root pathogens and can result in a "greenbridge" between weeds or volunteers and crop hosts. By planting 2 to 3 weeks after spraying, growers can avoid most negative impacts of the greenbridge by allowing pathogen populations to decline, but with the added cost of delayed planting dates. However, the specific changes in microbial communities during this period of root death and the microbial taxa likely to be involved in displacing pathogens are poorly characterized. Using high-throughput sequencing, we characterized fungal and oomycete communities in roots after applications of herbicides with different modes of action (glyphosate or clethodim) and tracked their dynamics over 3 weeks in both naturally infested soil and soil inoculated with Rhizoctonia solani AG-8. We found that many unexpected taxa were present at high relative abundance (e.g., Pythium volutum and Myrmecridium species) in live and dying wheat roots and may play an under-recognized role in greenbridge dynamics. Moreover, communities were highly dynamic over time and had herbicide-specific successional patterns, but became relatively stable by 2 weeks after herbicide application. Network analysis of communities over time revealed patterns of interactions among taxa that were both common and unique to each herbicide treatment and identified two primary groups of taxa with many positive associations within-groups but negative associations between-groups, suggesting that these groups are antagonistic to one another in dying roots and may play a role in displacing pathogen populations during greenbridge dynamics.


Assuntos
Glicina/análogos & derivados , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Triticum/microbiologia , Cicloexanonas , Glicina/efeitos adversos , Herbicidas/efeitos adversos , Raízes de Plantas/efeitos dos fármacos , Triticum/efeitos dos fármacos , Glifosato
13.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28864656

RESUMO

Glyphosate is the most widely used herbicide worldwide and a critical tool for weed control in no-till cropping systems. However, there are concerns about the nontarget impacts of long-term glyphosate use on soil microbial communities. We investigated the impacts of repeated glyphosate treatments on bacterial communities in the soil and rhizosphere of wheat in soils with and without long-term history of glyphosate use. We cycled wheat in the greenhouse using soils from 4 paired fields under no-till (20+-year history of glyphosate) or no history of use. At each cycle, we terminated plants with glyphosate (2× the field rate) or by removing the crowns, and soil and rhizosphere bacterial communities were characterized. Location, cropping history, year, and proximity to the roots had much stronger effects on bacterial communities than did glyphosate, which only explained 2 to 5% of the variation. Less than 1% of all taxa were impacted by glyphosate, more in soils with a long history of use, and more increased than decreased in relative abundance. Glyphosate had minimal impacts on soil and rhizosphere bacteria of wheat, although dying roots after glyphosate application may provide a "greenbridge" favoring some copiotrophic taxa.IMPORTANCE Glyphosate (Roundup) is the most widely used herbicide in the world and the foundation of Roundup Ready soybeans, corn, and the no-till cropping system. However, there have been recent concerns about nontarget impacts of glyphosate on soil microbes. Using next-generation sequencing methods and glyphosate treatments of wheat plants, we described the bacterial communities in the soil and rhizosphere of wheat grown in Pacific Northwest soils across multiple years, different locations, and soils with different histories of glyphosate use. The effects of glyphosate were subtle and much less than those of drivers such as location and cropping systems. Only a small percentage of the bacterial groups were influenced by glyphosate, and most of those were stimulated, probably because of the dying roots. This study provides important information for the future of this important tool for no-till systems and the environmental benefits of reducing soil erosion and fossil fuel inputs.


Assuntos
Bactérias/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/farmacologia , Triticum/microbiologia , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Glicina/farmacologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Triticum/efeitos dos fármacos , Glifosato
14.
J Ind Microbiol Biotechnol ; 43(2-3): 115-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26434742

RESUMO

Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random 'fishing expeditions' for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Descoberta de Drogas , Ecossistema , Interações Microbianas , Animais , Humanos , Filogenia , Filogeografia , Simbiose
15.
BMC Evol Biol ; 15: 186, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26370703

RESUMO

BACKGROUND: Tradeoffs among competing traits are believed to be crucial to the maintenance of diversity in complex communities. The production of antibiotics to inhibit competitors and resistance to antibiotic inhibition are two traits hypothesized to be critical to microbial fitness in natural habitats, yet data on costs or tradeoffs associated with these traits are limited. In this work we characterized tradeoffs between antibiotic inhibition or resistance capacities and growth efficiencies or niche widths for a broad collection of Streptomyces from soil. RESULTS: Streptomyces isolates tended to have either very little or very high inhibitory capacity. In contrast, Streptomyces isolates were most commonly resistant to antibiotic inhibition by an intermediate number of other isolates. Streptomyces with either very high antibiotic inhibitory or resistance capacities had less efficient growth and utilized a smaller number of resources for growth (smaller niche width) than those with low inhibition or resistance capacities, suggesting tradeoffs between antibiotic inhibitory or resistance and resource use phenotypes. CONCLUSIONS: This work suggests that life-history tradeoffs may be crucial to the maintenance of the vast diversity of antibiotic inhibitory and resistance phenotypes found among Streptomyces in natural communities.


Assuntos
Microbiologia do Solo , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Antibacterianos/farmacologia , Carbono/metabolismo , Ecossistema , Streptomyces/genética , Streptomyces/isolamento & purificação
16.
Ecology ; 96(1): 134-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236898

RESUMO

Plant species, plant community diversity and microbial interactions can significantly impact soil microbial communities, yet there are few data on the interactive effects of plant species and plant community diversity on soil bacterial communities. We hypothesized that plant species and plant community diversity affect soil bacterial communities by setting the context in which bacterial interactions occur. Specifically, we examined soil bacterial community composition and diversity in relation to plant "host" species, plant community richness, bacterial antagonists, and soil edaphic characteristics. Soil bacterial communities associated with four different prairie plant species (Andropogon gerardii, Schizachyrium scoparium, Lespedeza capitata, and' Lupinus perennis) grown in plant communities of increasing species richness (1, 4, 8, and 16 species) were sequenced. Additionally, soils were evaluated for populations of antagonistic bacteria and edaphic characteristics. Plant species effects on soil bacterial community composition were small and depended on plant community richness. In contrast, increasing plant community richness significantly altered soil bacterial community composition and was negatively correlated with bacterial diversity. Concentrations of soil carbon, organic matter, nitrogen, phosphorus, and potassium were similarly negatively correlated with bacterial diversity, whereas the proportion of antagonistic bacteria was positively correlated with soil bacterial diversity. Results suggest that plant species influences on soil bacterial communities depend on plant community diversity and are mediated through the effects of plant-derived resources on antagonistic soil microbes.


Assuntos
Biodiversidade , Consórcios Microbianos , Plantas , Microbiologia do Solo , Andropogon , Lespedeza , Lupinus
17.
FEMS Microbiol Ecol ; 88(2): 386-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24580017

RESUMO

Although recent molecular techniques have greatly expanded our knowledge of microbial biogeography, the functional biogeography of soil microorganisms remains poorly understood. In this work, we explore geographic variation in Streptomyces phenotypes that are critical to species interactions. Specifically, we characterize Streptomyces from different locations from multiple continents for antibiotic inhibition, resistance, and resource use phenotypes. Streptomyces from different locations varied significantly in antibiotic inhibition, resistance, and resource use indicating that communities vary in functional potential. Among all isolates, there were substantial differences in antibiotic inhibition, resistance, and resource use within and among and within Streptomyces species. Moreover, Streptomyces with near-identical 16S rRNA gene sequences from different locations sometimes differed significantly in inhibition, resistance, and resource use phenotypes, suggesting that these phenotypes may be locally adapted. Thus, in addition to a likely role of environmental filtering, variation in Streptomyces inhibitory, resistance, and resource use phenotypes among locations is likely to be a consequence of local selection mediated by species interactions.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Streptomyces/classificação , Streptomyces/efeitos dos fármacos , Fenótipo , Filogenia , Filogeografia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Streptomyces/crescimento & desenvolvimento , Streptomyces/isolamento & purificação
18.
Mol Ecol ; 23(6): 1571-1583, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24148029

RESUMO

A conceptual model emphasizing direct host-microbe interactions has dominated work on host-associated microbiomes. To understand plant-microbiome associations, however, broader influences on microbiome composition and functioning must be incorporated, such as those arising from plant-plant and microbe-microbe interactions. We sampled soil microbiomes associated with target plant species (Andropogon gerardii, Schizachyrium scoparium, Lespedeza capitata, Lupinus perennis) grown in communities varying in plant richness (1-, 4-, 8- or 16-species). We assessed Streptomyces antagonistic activity and analysed bacterial and Streptomyces populations via 454 pyrosequencing. Host plant species and plant richness treatments altered networks of coassociation among bacterial taxa, suggesting the potential for host plant effects on the soil microbiome to include changes in microbial interaction dynamics and, consequently, co-evolution. Taxa that were coassociated in the rhizosphere of a given host plant species often showed consistent correlations between operational taxonomic unit (OTU) relative abundance and Streptomyces antagonistic activity, in the rhizosphere of that host. However, in the rhizosphere of a different host plant species, the same OTUs showed no consistency, or a different pattern of responsiveness to such biotic habitat characteristics. The diversity and richness of bacterial and Streptomyces communities exhibited distinct relationships with biotic and abiotic soil characteristics. The rhizosphere soil microbiome is influenced by a complex and nested array of factors at varying spatial scales, including plant community, plant host, soil edaphics and microbial taxon and community characteristics.


Assuntos
Bactérias/classificação , Microbiota , Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Simbiose , Antibiose , Bactérias/genética , Streptomyces/genética , Streptomyces/patogenicidade
19.
ISME J ; 8(2): 249-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24152720

RESUMO

Soil bacteria produce a diverse array of antibiotics, yet our understanding of the specific roles of antibiotics in the ecological and evolutionary dynamics of microbial interactions in natural habitats remains limited. Here, we show a significant role for antibiotics in mediating antagonistic interactions and nutrient competition among locally coexisting Streptomycete populations from soil. We found that antibiotic inhibition is significantly more intense among sympatric than allopatric Streptomycete populations, indicating local selection for inhibitory phenotypes. For sympatric but not allopatric populations, antibiotic inhibition is significantly positively correlated with niche overlap, indicating that inhibition is targeted toward bacteria that pose the greatest competitive threat. Our results support the hypothesis that antibiotics serve as weapons in mediating local microbial interactions in soil and suggest that coevolutionary niche displacement may reduce the likelihood of an antibiotic arms race. Further insight into the diverse roles of antibiotics in microbial ecology and evolution has significant implications for understanding the persistence of antibiotic inhibitory and resistance phenotypes in environmental microbes, optimizing antibiotic drug discovery and developing strategies for managing microbial coevolutionary dynamics to enhance inhibitory phenotypes.


Assuntos
Antibiose , Evolução Biológica , Ecossistema , Microbiologia do Solo , Streptomycetaceae/fisiologia , Antibacterianos/farmacologia , Fenótipo , Streptomycetaceae/efeitos dos fármacos
20.
Microb Ecol ; 66(4): 961-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959115

RESUMO

In this study, we explore variation in resource use among Streptomyces in prairie soils. Resource use patterns were highly variable among Streptomyces isolates and were significantly related to location, phylogeny, and nitrogen (N) amendment history. Streptomyces populations from soils less than 1 m apart differed significantly in their ability to use resources, indicating that drivers of resource use phenotypes in soil are highly localized. Variation in resource use within Streptomyces genetic groups was significantly associated with the location from which Streptomyces were isolated, suggesting that resource use is adapted to local environments. Streptomyces from soils under long-term N amendment used fewer resources and grew less efficiently than those from non-amended soils, demonstrating that N amendment selects for Streptomyces with more limited catabolic capacities. Finally, resource use among Streptomyces populations was correlated with soil carbon content and Streptomyces population densities. We hypothesize that variation in resource use among Streptomyces reflects adaptation to local resource availability and competitive species interactions in soil and that N amendments alter selection for resource use phenotypes.


Assuntos
Nitrogênio/metabolismo , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Streptomyces/metabolismo , Carbono/análise , Carbono/metabolismo , Dados de Sequência Molecular , Nitrogênio/análise , Solo/química , Streptomyces/genética , Streptomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA